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We show that Hamiltonian nonlinear dispersive wave systems with cubic nonlinearity and random initial
data develop, during their evolution, anomalous correlators. These are responsible for the appearance of
“ghost excitations, i.e., those characterized by negative frequencies, in addition to the positive ones
predicted by the linear dispersion relation. We use generalization of thes\dédomposition and the wave
turbulence theory to explain theoretically the existence of anomalous correlators. We test our theory on the
celebrated -Fermi-Pasta-Ulam-Tsingou chain and show that numerically measured values of the
anomalous correlators agree, in the weakly nonlinear regime, with our analytical predictions. We also
predict that similar phenomena will occur in other nonlinear systems dominated by nonlinear interactions,
including surface gravity waves. Our results pave the road to study phase correlations in the Fourier space
for weakly nonlinear dispersive wave systems.
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I. INTRODUCTION clear later on, under the homogeneity assumption, the
Wave turbulence theorv has led to successful predictio second-order correlator is related to the wave action spectral
ry P r?Js‘ensity function, i.e., thevave spectrumn, ¥ ndk;tR

on the wave spectrum in many fields of phy$icg]. In ﬂ.".s owever, one should note that the complex normal variable,
framework the system is represented as a superposition o & defined in the wave turbulence theory, is a complex

large numb_er of Welakly |pteract|_ng waves with the Compleﬁnction also in physical space. Therefore, the second-order
normal variablesy Vs ac’i(,_tb. In its essence, the c_Iass_lcaI statistics are not fully determined by the above correlator.
wave turbulence theory is a perturbation expansion in the, . <4 called“anomalous correlatbr he, &k &b, see
amplitudea, of the nonlinearity, yielding, at the leading Refs.[9,10], needs also to be computéd. Under th’e hypoth-
order, to a system of quasilinear waves whose amplitudes aigq o Horr’]ogeneity, this will give tmomalous spectrum
slowly modulated by resonant nonlinear interactidn$l. 1/, mac; th to be defined in the next section. Indeed, if
This modulation leads to a redistribution of the Spectrghpases are totally random, this quantity would be zero. We
energy density among length scales, and is described bysgoy that, in the nonlinear evolution of the system, this is not
wave kinetic equation. One way to derive the wave kinetighe case. Far from it, this quantity is strongly nonzero and, in
equation is to use the random phase and amplitude approgg jimit of weak nonlinearity, we predict analytically and
developed in Ref$2,7,8] The initial state of the system can verify numerically its value.

always be prepared so that the assumption of random phaseg)r ideas are based on the extension of the wave

and amplitudes is true. Whether the phases remain randomyplence theory to include these anomalous correlators.

the evo_lut|on of the system has been an issue of 'n.ten?\?otably, conventional wave turbulence theory has been
discussions. In wave turbulence theory, the standard object to

look at is the second-order correlat, &k, &b, where successful in the understanding of the spectral energy
h iis an average over an ensemble of initial conditiongar,]Sfer in complex wave sys'Fems such as the gdddn
with different random phases and amplitudes. As will b&Ptcs [12] and Bose-Einstein condensatiis3], one-
dimensional chaingl4], and magnet§l5]. Analogously,
anomalous correlators first appeared in the well-known
"Corresponding author. Bardeen-Cooper-Schriffer theory of superconductiiy.
Ivovy@rpi.edu Subsequently, anomalous correlators have been studied in
_ ) _ _ Stheory[9,10].
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Schrodinger equatiofil7-19]. Such oscillations, corre- Il. MODEL

sponding to a fraction of the wave action being periodically The theory that we develop hereafter applies to any

converted from the condensate to the turbulent part of th%ftem with cubic nonlinearity. Examples of such systems,

[slp7e]ctr:1nm,r\\:\; ire[zg?wgtosbiti':ﬁdz dg;}o@zasr?oz?iﬂiﬁn ong others, include deep water surface gravity waves
Schrodinger equations hgs been considpered and spec o], nonlinear Klein-Gordon[22], and the -Fermi-
9 q P sta-Ulam-Tsingou chain. In normal variabkgs the

attention was focused on the phenomena of recurrence e .
) P Hamiltonian of these systems assumes the canonical form:
incoherent waves observed in the early stages of the

dynamics. The authors derived a variant of the kinetic  x X
equation which includes anomalous correlators; the pectt Va i p 6I'?1224a1a2a3a4 b ccp334
liarity of such an equation is that it is capable of describ- k kyikaikaiky
ing properly the recurrence phenomena observed in the 1_op a4
simulations. b 512321328384 15
One of the main tools used to derive the theory is the
Wick’s contraction rule that allows one to split higher- b fTﬂ;Aaalaza?,a‘l b ccb sz, ; alb

order correlators as a sum of products of second-order 4

co_rrelators, plus cumulants. To explain _analyucally th here ¥4 d&bare the positive frequencies associated
existence of the anomalous correlators, it is necessary to ) ) ) b
use the more general form of the Wigkdlecomposition, 0 the wave numbers via the dispersion reIatFﬁfbgf‘
namely the form that allows anomalous correlators. Wwaré coefficients that depend on the problem considered
then demonstrate that the anomalous correlators af@d satisfy specific symmetries for the system to be
responsible for creating thghost waves,i.e., the waves Hamiltonian, c.c. implies complex conjugatiog ¥a
with the frequency equal to the negative of the frequencgdk; ; tPare the complex normal variables, afftdys &; p
predicted by the linear dispersion relationship. Thesk; k kyPis the Kronecker delta. We assume that the
ideas are tested on a simple, but nontrivial, system, i.eonly resonant interactions possible are the ones for which
the -Fermi-Pasta-Ulam-Tsingou (FPUT) chain. Thethe following two relations are satisfied for a set of wave
chain model was introduced in the 1950s to study th@umbers:

thermal equipartition in crystal®1]: it consists ofN

identical masses, each one connected by a nonlineRfp k, Yaks p Kg; &pp &pP¥ &sbpp &k
string; the elastic force can be expressed as a power op
series in the displacement from equilibrium. Fermi, Pasta,

Ulam, and Tsingou integrated numerically the equations ., . I . . .
. : ; . With the objective of presenting some comparison with
of motion and conjectured that, after many iterations, the

o . ; .numerical simulations, out of many physical systems
system would exhibit a thermalization, i.e., a state in . o .
described by the above Hamiltonian, we select a simple

which the influence of the initial modes disappears and thene-dimensional system, theFermi-Pasta-Ulam-Tsingou

system b_e_comes random, with all modes excited qual@hain. Modeling a vibrating string, this problem consists of
(equipartition of energy) oaverage. Successful predic-

tions on the timescale of equipartition have been recent@tSyStem oN identical particles connected locally to each

obtained in Refs[14,22,23]using the wave turbulence her.byanonlmear qscnlator. In physical space interms of
the displacements with respect to the equilibrium position

approach. In this paper, we perform extensive numerical : S
sﬁr?ulations with irF:itiFf:\I randol?n data and look at all thedi ¥Pand their momenta; &p the Hamiltonian takes the
possible excitations, once a thermalized state has beg)r{lowmg form:
reached. This is all done by analyzing the spatial-temporal
& b spectrum, i.e., the square of the space-time
Fourier transform of the wave amplitudes. Analyses of .
the effective dispersion relation in the nonlinear system i‘é"th
a well-known and widely used theoretical and numerical !
tool; see, e.g., Ref24]. H, Y }pzp }aq. GpiP

We give numerical evidence that in addition to the v 2707270 7
“normaf waves with frequency predicted by the linear "
dispersion relation for wave numbethere are théghost HoYa= & dp B b
excitations with the negative frequencies. Our theoretical jva S
analysis reveals that the origin of those ghost excitations
resides on the nonzero values of the second-order anoma-is the nonlinear spring coefficient (without loss of

lous correlator. generality, we have set the masses and the linear spring

H1/4H2b H4, asb
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constant equal to 1). Newtanlaw in physical space is homogeneous and stationary conditions, the second-order
given by & pcorrelator takes the following form,

q Va@pab g 1 2gPPp Y@y, P & q 1P &k ke Piv%N; P& kbd, 4B
b op

We assume periodic boundary condition; our approach ighereh i implies averages over initial conditions with

developed in Fourier space and the following definitions ofjifferent random phaseli&; bis thed  Pspectrum
the direct and inverse discrete Fourier transforms atefined as follows:

adopted:
=! b 1lzb X i2 KI=Ng i
1 X1 > ke X=2 e NEK; b Ya—— Rd; ke 2K=Ngi ¢
Qx 1/4N gje '= 97, g Ya Qe = Y, 2 N Iyl
jv:0 kva N=2p 1 5100
oPb
. . WwhereRd; PYlhdba, &p Piisthe space-time auto-

wherek are discrete wave numbers d@@gare the Fourier cqrelation function.

amplitudes. The displacemegjtand momenturp; of the Linear&  Pspectrum—Before diving into the non-
j particle are linked by canonically conjugated Hamiltoninear dynamics, we discuss the predictions in the linear
equations: regime. Therefore, we start by neglecting the nonlinearity
in Eq. (8) and find the solution in the form
pj ¥a —H; q 1/4—H: ,
qj pj akab J/Aakaote ! kt; 611p

We then perform the Fourier transformation to Fourie(,vhereto is a time at which the solution is known or an

images of position and momenta, and then additionghjsia| condition. We then take the Fourier transform in
canonical transformation to complex amplitaggiven by ,q.

1 .
Ay 1/4pz—k6 ka p IPKQ orb ak; b Viaad; top o) kp alzb

where | ¥22jsind k=Nbj> 0 and Q, and P, are the After multiplication by its complex conjugate and taking
Fourier amplitudes af andp. , respectively. In terms @ averages over different realizations with the same statistics,
i i :

the equation of motion reads, see R2f], we get

da, X a0 o N&; P YanBR; tob & kP al3p
i at Ya waip OT 1 23,828584 5D T1pa@,8384 53
ko;ksiKs wheren®P&; tobis the standard wave spectrum at tige
o) 34b -
b T a.a.a, i‘ng T a,853, 1232 &b related to the second-order correlator as

- - i by, - : :
where all wave numbefs, k3, andk, are summed from O hadk; toFadk;; toP i ¥a N0k P & kR al4P

toN land &%, &, p kyp ke kg pis the
generalized Kronecker delta that accounts for a period
Fourier space; i.e., its value is one when the argument is 1

equal to 0 (modN). The matrix elementE sa, Toans Toaas n®R;; toP 7y B %oRypidobie 2N Al
prescribe the strength interactions of wave numbgls, '

ks, andk,. Their values are given in the Appendix

%nd defined via the autocorrelation function as

In the linear regima®"&;; topdoes not evolve in time.
Equation(13) implies that in the linear case the b
A. &  Pspectrum spectrum is different from zero only for those values of
The main statistical object discussed in this paper is thendk for which the dispersion relation is satisfied. Note that
wave number-frequendk  Pspectrum. Starting from in this formulation | is defined as a positive quantity;
the complex amplitudedk; tbwe take the Fourier trans- therefore, only the positive branch of the dispersion relation
formin time so that we getdk; B under the hypothesis of curve appears in the linear regime.
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FIG. 1. & pspectrumN®F&k; R for different values of: (a) %0, (b) ¥0.0089(c) ¥40.089(d) ¥ 1.12. Inthe linear case,

(a), theN®P&;  bis different from 0 only when the frequencymatches the linear dispersion relation. As the nonlinearity is increased,
(b)Hd), a frequency shift, a broadening of the frequencies, and a lower branch less intense than the upper one are visible. Waves witf
negative frequencies are namigghost excitations.

B. Numerical results for thedk  Pspectrum plotted using a colored logarithmic scale. We first focus

We now test the predictions from E@.3) in both the purgttention onthe Iinear regimeys 0. Results are shown
linear and nonlinear regimes. We perform numericalf! Fi9- 1(2) As well predicted by the theory, the plot shows
simulations of Eq(5) using a symplectic algorithm; see dOts in the positive frequency plane, where the frequencies
Ref. [27]. We use 32 particles in the simulations; such a and wave numbers satisfy the linear dispersion curve
choice is completely uninfluential for the results presentedk Increasing the nonllnearlty,_ FlgB(b)—l_(d), two_well-
below. In the linear regime, we just prescribe a thermalizef'OWn €ffects appear. The first one is a shift of the

spectrum with some initial random phases of the wavd€duencies, due to nonlinearity [this is more evident in

amplitudes, and evolve the system in time up to a desire igs.1(c)and1(d)where the frequency scale in the vertical

final time; a Fourier transform in time is then taken to buil €S has been changed]. The second one is the broadening

the & bspectrum. In the nonlinear regime we performOf the frequencies. This is related to the fact that the
: E—‘mplitude for each wave number is not constant in time;

long simulations up to a thermalized spectrum. For a give f th litude-d dent f . i
nonlinearity, 1000 realizations characterized by differen erefore, the amplitude-dependent Irequencies are no
Q stant in time and they oscillate around a mean value

random phases are made and ensemble averages ) .
considered to compute trk b spectrum. All simu- Wit some fluctuations. Those' results are well understood,
lations have the same initial linear energy and, from aﬁieldeigtset dlzs}ze v\yae\?ekl}[/urgﬂ?ellgfgrtor(‘)alg!n?si’e a&gtgé?n be
operative point of view, the only difference between them i 9 ’ :

the value of . To characterize the strength of the non- reessf(ejﬁzetr;?zelotvvx\:gr E?:ﬁéi afﬁ(r)tlsnegirjtrgrrwgitm?g)ﬁmi less
linearity, we use the following ratio between nonlinear an ! y

. o N . . 1han the upper one, starts to be visible. The lower curve
linear Hamiltonians at the beginning of each simulation: : . L
becomes more important and, when the nonlinearity is of

H, order one, is of the same order of magnitude as the upper
1/4H— : al6P  one. The total number of waves in the simulatig is
2 given by the integral over and the sum over al of the
Results are shown in Fig, where, for different values of functionN®; B In the weakly nonlinear regimi,,, is
the nonlinear parameter, the spectrumN®"&; bis an adiabatic invariant of the equation of moti@) the
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03 Similarly, we also introduce the second-order b

0.25 d anomalous correlator:
2§ 0.2 ° i hia(,, |ta8(, mpl 1/4M&pa(i; |D3<i p klbé |b m':?
% 0.15 aLop
= -

0 where

005t © .
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FIG. 2. Ratio between the number of ghost excitatlpg,;

over the total number of waveN as a function of the andSd; P % b&Ry, & p Pi The presence in EqEL7)

nonlinearity. and (19) of the Kronecker over wave numbers and the
Dirac over frequency are related to the hypothesis of

plot highlights the existence of waves with negativestatistical homogeneity and stationarity, respectively. Note

frequencies, which will be nametghost excitations. 4+ M®R%: bis not the Fourier transform in time of

One of the scopes of the present paper is the understanding, . .
of the origin of such waves. Before entering into theTk APand, in general, both can be complex functions. To
discussion, we show in Fig.the ratio of ghost excitations verify numerically that the anomalous correlator is indeed

Nghoss i.e.,N®%: bintegrated over negative frequencies”onzero’ we measure numerically the real part of the

and summed over all wave numbers, divided by the totaiccond-order correlatémy dRay, bi as a function ok,
number of waveBl,,. As can be seen from the plot, there is8ndkz. Results are plotted in Fi¢ where we show the

a monotonic growth of the ghost waves that, for very |argé¢sults of two numerical S|mulat|ons character!zed by two
nonlinearity, can reach values up to 25% of the totaflifferent values of the nonlinear parameter: Bi@) ¥

number. 0.0089and Fig.3(b) % 1.12. In both cases, a diagonal
contribution is visible, pointing out the existence of
IIl. ANOMALOUS CORRELATORS anomalous correlators in theFPUT model.

) o ) Generalization of the Witk decompositior-Using
To explain the presence of ghost excitations, we introdugeq. (17), it is straightforward to extend the Wisk
the so-called second-order anomalous correl@®®,20]  decomposition by taking into account the anomalous

correlators, as done in RgL5]:

etk &bi Yamab &b j B am
. . : Kilp kI .
with the anomalous spectrum defined as heya apani Yanmd 5 w b pPPMMy 4 pns
i | n p .
1 X o mkalapan| Ya nkmp6 k pn (O p P PN M
miapab Yia— I’HJ ajp||e i2 kI_N: alsp 1
N, haapani Ya mimd i, nb W pn P W pnP &1p
15 g T T T T 15 E W T T T T 0.001
10 . 10 - xi
(@) (b) “my 0.0005
5 - - 5 + I.. =
£ oo f 1ot ."._...- 1H o
5 L 4 5 [ gl
., - -0.0005
-10 . 10 | .
-15 1 | 1 | 1 -15 | | ] | 1 485 _0.001
145 10 -5 0 5 10 15 15 -10 5 0 5 10 15
ki ki

FIG.3. The real part of the second-order anomalous correlatéRe i , for (a) % 0.0089 (b) ¥421.12 Adiagonal contribution
corresponding tdk, ¥4 k; is evident in both panels. As the nonlinearity is increased, the contribution becomes larger.
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FIG. 4. Fourth-order correlatpRe/#y ay,a, ay i, 1] With k3 ¥220. (a) %20.0089 (b) ¥21.12. Different horizontal, vertical,

and diagonal lines are visible. Horizontal and vertical lines correspond to trivial resokaiaés; vertical line;k, ¥4 ks, horizontal

line;k, %2 ki p N, diagonal line. The latter line corresponds to the presence of an anomalous second-order correlator. The intensity of
the lines is larger for larger nonlinearity.

The above relations will be fundamental for making &b,&Pcontains resonant interactions and takes the following
natural closure of the moments when calculating analytstandard form:

cally thedk b spectrum.
In Fig. 4, we find further evidence justifying this .db; b b
decomposition by plotting the real part of the fourth—orde}_tl/4 1b, p - T12ad0,b3b4 33p higher-order terms
2:083,R4

correlator hey, ay,a, a, i, ¢, With k3 %220, computed

from numerical simulations for Fig(a) %.0.0089and | o6 higher-order terms arising from the transformation
Fig. 4(b) v 1.12 The diagonal lines in both figures, have beegn neglected g

highlighting the contribution from the second-order anoma- Using the transformatior(22) and the generalized
lous correlator, are noticeable. The vertical and horizont@,{lick,S decomposition(21), we can now build the

lines correspond to the trivial resonances in which tW?ime—averaged anomalous spectrum (for details, see
wave numbers are equal (mbi. AppendixB): ’

. - X
A. Theoretical prediction for the anomalous hnf"’api[ 1, zaqff‘pp naj(pp prk-j-j njfhp; o3

correlator in the weakly nonlinear regime i

A key step for the development of a theory for the
anomalous correlator is the change of variable (ned¥hereh i, implies averaging over time. For the=PUT
identity transformation) which allows one to rembeeind  system in thermal equilibrium, wheméap% T= with T
modes, i.e., those modes that are phase lockedeéo constant, Eq(23) reduces to
modes and do not obey the linear dispersion relation. The
procedure is well known in Hamiltonian mechanics and
well documented, e.g., in R¢lL]. We accomplish this via
the following canonical transformation from variahjétb

3NT?

JhmEFebij Vs 5 &4p

to byabk In Fig. 5, we compare this prediction fo&jhmﬁapdbitj in
ab b thermal equilibrium to the values given by numerical
ay Yaby p B1,3bobsb, 224p Bob,bsby 15g simulations for varying values of nonlinearity: the results
kaikaiky are in good agreement in the weakly nonlinear regime,
b : < 0.1 [
P B123ob3by 12345 b 0.1. Here 500 ensembles were used to build the

correlatorm, &b the subsequent time-averaging window

with the Coefﬁcientg?,?;M selected in such a way as to used WaQTOB with a sample spacing oft %2 0.1. For larger
remove nonresonant terms in the original Hamiltofgah ~ nonlinearity, it is expected that higher-order terms play a
Their values are given in Appendix role in the evolution of the anomalous correlator.
The transformation is asymptotic in the sense that the N Fig. 6, we show the time evolution of the first five
small amplitude approximation is made and the terms if"odes ofh ,m, " d.bi - j, where ensemble averaging is
the sums on the right-hand side are much smaller than thised to buildmf‘pdb and time averaging is used over
leading-order terrmb;. The evolution equation for variable the window 0<t, <t to remove fast oscillations
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0.035 0.025 ,
*  Numerical A
g 0.02 | A Theoretical
0.037 = 0015 A
— 2 *
= s *
= 0.01
£ 0025 N P »
= 0.005 : : :
3 0 0.02 004 006 0.8 0.1
0.02 - ', i i €
_f___;_,_*_,_*_,L,,_*:__;__*_HJ_T,_*_*;____*_ FIG. 7. The ratio between the number of ghost excitations
0.015 . . , . . Ngnost OVer the total number of waveg,; as a function of the
5 10 15 20 25 30 nonlinearity. Values given by numerical simulations (blue) are
k compared with the theoretical predictions (red) given by{ZEq).

FIG. 5. Comparison of anomalous spectrunji‘mﬁababitj as ) ) .
observed in numerical simulations (dots) with theoretical pretransformation (see Appendi®), using the generalized
dictions given by Eq(24) (dashed lines) for ¥, 0.065 0.072, Wick's decomposition and the hypothesis of statistical

0.086, and 0.101. stationarity and homogeneity, we get at leading order:
16 , NERXK; b van®P; tob & b
141 ::f; b FKRem®™X;tob 6 p B &5
— 12 k=31 .
5] B, with
10} \ ——k=5]] Z x
£ gf A\ | Fap 4 BEIN®R; W, @ep
= 4! ] where we have used the fact that at the leading
5] . order, mM®Pk;tb  m®%;tb and n®Pk;tob  n®RK; tok
I Equation(25) predicts the presence of the upper and lower
05 0 05 1 15 2 25 branch in the& b plane. The presence of ghost
logio t excitations is clearly related to the second-order anomalous

correlator. We can now predict the percentage of ghost
FIG. 6. Time evolution of the first five modes of the averagedexcitations as
quantityjh kmﬁa"dabi[aqj fromt % 0tot % 100Q with ¥4 10. =
Nghost% 5 (ReEMPF; topF &P _
[see Eq.(B5). We verify that this quantity is indeed Nt~ f n®%; tob p Rem®R; toPF&bg
initially zero due to the randomness of phases. Here we
use a larger value of nonlinearity¥s 10 to show the In Fig. 7, we plot the ratio as determined by H@G7)
development of the anomalous correlator in a shorter timg@mpared with the ratio observed in our simulations for
window. The amplitudes were initialized so thatdt ¥a several values of nonlinearity. We find that the results agree

. . . for small values of nonlinearity < 0.03; for larger non-
OPj¥s v~ kp=2 for kv 13 . .2’ 3, with h'|gh_er Ainearity, the theoretical prediction is considerably larger.
modes zero. The phases were initially normally distributed.

We observe that the anomalous correlator grows with time,
reaching a peak in modes 1, 2, and 3, before it eventually

V. NONLINEAR STANDING WAVES

saturates between all modes equally, Wi@hmsabaapiqaj The development of a regime characterized by an
being constant for large times, as expected from Ou?nomalous spectrum cqrresponds_ to a te_n(_:iency_ for the
prediction Eq(23). system to develop standing waves in the original displace-

ment variabley; &P Indeed, the existence of an anomalous
IV. THEORETICAL PREDICTION FOR spectrum implies a correlation bet_ween positive and neg-
ative wave numbers. The connection between the anoma-
GHOST EXCITATIONS . .
lous correlator and standing waves can be seen in the
We have now developed all the tools for predictingfollowing illustrative example. Consider the restrictive
analytically thedk b spectrum as defined in E(Q). ensemble of realizations of thénear system where
Taking the Fourier transform in time of the canonicalamplitudes and phases are initiated in Fourier space with
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a correlation between wave numbé&rg: 1 andk % 1. —___——— 760:”, = j = ’
Namely, let us initialize the system with equal amplitudes 8oof— —— = T8 e 3
and opposing phases: s00f — 740 e —— 1
8 , — —— e .

< Ale be if kY%l 400 — 730 e __—E:—
i — — 1

adt va0b v Aet  if k¥ 1 a8p 200 m—— — [ ———————
. = S - - = 2

0 otherwise 0 710t
5 ] 10 15 5 j 10 15

with the random phase;. In terms of the displacement

variables, this would correspond to the system beingig.g. Color map of the displacemepétbfor the system with
initially at rest and displaced from equilibrium as a single v, 4.74initialized with particles at rest with initial positions as a

wave: single sine wave. A nonlinear standing wave pattern is visible.
S
q; & ¥4 0P Yi2A icos 2_1 L standing wave behavior are clearly visible as darker regions
! 1 N in the image, as the inset of Fig(b) shows.

) ) ) ~ltis important to emphasize that Fjshows a single
Since the system is assumed to be linear, the timgalization of the system, while correlatomgdb n,&p
evolution of complex amplitudes; and a ; will be  gescribe statistical ensemble-averaged quantities. Thus the
given by existence of the standing wave patterns is not in violation of
. the presumed assumption of spatial homogeneity.
a &P A1t " Below we give numerical evidence that such coherent
] structures can also be observed for smaller values of non-
Averaging over random phasg, the anomalous correlator |inearity that are within the regime of validity of our theory.
becomes In Fig. 9(a) we plot the displacement as a function of
time for the system with ¥ 0.02, a value of nonlinearity
well within the regime of agreement of our theory, as shown
in Figs.7 and5. Here, we prescribe initial conditions so that
the total energy is initially in the first wave number, i.e.,
& ¥4 0P Y0 for all k 1, and plot a single realization.
his corresponds to a pure traveling wave solution in the
linear system; indeed, as seen in F(p) the system is

my YVa hila 1i Ya A%e 2 1t;

analogous to the oscillating term of E(B5) for the
anomalous correlator in the nonlinear case with amplitud
and phases being initially completely random. In terms
displacement, such initial conditions give

S initially a traveling wave, represented by series of slanted
2 2] parallel lines in the color map af &k Conversely, in
b Y2A, —cos — cod 1tk ) o ’
9 oy N o ! Fig. 9(b), we show that by the time the system has reached

the timescale required for statistical thermal equilibrium, a
which corresponds to the standing wave pattern. Thus, w&ominent standing wave has developed, due to the phase
see that the phase and amplitude correlations which resatirrelations between positive and negative lowest wave
in a nonzero anomalous correlator are directly linked to theumbers. Notably, phase correlations are not restricted to
formation of standing waves in this particular example. only the lowest wave numbers. To emphasize this, we

This consideration can be generalized for the case ebnsider the following spatial frequency filter applied to the
weakly nonlinear systems and more general initial condisplacement,
ditions. Indeed, for weakly nonlinear systems the ampli-

tudesja;j andja ;j will be changing slowly over many . X=2 T
oscillations, thus maintaining strongly nonzero anomalous Gjab ¥a . Hi Qi€ "7, @9
correlations and standing waves. ks N=2p1

In Fig. 8(a) we numerically solve the equations of \yhere
motion with initial conditions given by E¢28). Here we
plot a color map of the displacemegttbfor all masses 1 if k¥4a5;6

. . . H 1/4

as a function of time as the system reaches the timescale k 0 otherwise

required for statistical thermal equilibrium. The nonlinear-

ity parameter ¥ 4.74, in the regime of strong non- is selected to only show the waves with frequencies
linearity and outside the regime of validity of our theory.corresponding t& ¥4 5, 6.

Nevertheless, we initially consider this example to display We plot the resulting color map @ &Pin Fig. 9(c),
how the system behaves when the phase correlatiomsth Fig. 9(d) showing a closer look at the boxed region
develop rapidly. The existence of several regions oin Fig. 9(c). Here we clearly still observe these standing

021043-8



ANOMALOUS CORRELATORS IN NONLINEAR DISPERSIVE. PHYS. REV. X10, 021043 (2020)

FIG. 9. Color map of the displacememttbfor %4 0.02: (a) initial traveling waveQ <t < 100Q (b) standing wave structure in
thermal equilibriuml10° <t < 10° p 100Q (c) G; &R displacement after removing wave numbse¥s1; ...; 4, 7; ...; N, (d) closer look
at the boxed region in (c).

waves in the selected unfiltered wave numbers, meaning Similarly, in Fig. 10 we obtain similar results for a
that the coherent structures are not limited to the loweshoderate value of nonlinearity% 0.54 just outside the
wave number. Our choice of displaying wave numbersange of applicability of our theory. We plot the initial time
5,6 is arbitrary; we also verified that similar structuresvolution of the displacements in Fig0(a) the time
exist over all the wave numbers. evolution of the displacements in thermal equilibrium in

FIG. 10. Color map of the displacemepttbfor ¥ 0.54 (a) initial traveling waveQ <t < 100Q (b) standing wave structure in
thermal equilibrium10® <t < 10°p 100Q (c) qj &Pk displacement after removing wave numbe¥s1; ...; 3;5; ...; N, (d) closer look
at the boxed region in (c).
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Fig. 10(b) and the displacements after applying a spatiahction from turbulence and condensate in the nonlinear
frequency filter to emphasize wave numbet24 in  Schrodinger equatiofil7]. Our approach of extending

Fig. 10(c) We note the arbitrary fluctuations betweenwave turbulence theory to include the anomalous corre-
the coherent standing waves and between traveling wavigor could be generalized to address the role these

in Figs.10(b)and 10(c) correlations play in the statistical properties of the nonlinear
Schrédinger equation and other integrable systems. On a
VI. CONCLUSION similar note, recurrences in a nonlinear Schrédinger-like

odel were shown to be directly related to the formation of
omalous phase correlatig@6]; further investigating the
otential ties between FPUT recurrences and the anoma-

In this paper we have given the numerical evidencd”
that anomalous correlators develop spontaneously in
classical system. From a theoretical point of view it i ) .
possible to develop a theory for weakly nonlinear dis-°US correlator is a subject of current work.

persive waves that accounts for the presence of such anFmaIIy, we emphasae_that the Hamiltonian we consu;l—
red is of the same family as the one for surface gravity

anomalous correlator. The framework in which the theorg/ ft . b cal ; .

has been developed is the wave turbulence one. In suc ves (after removing Py @ canonical transformation

theory, one usually is interested in the second-ord onresonant three-wave interactions). We predict that also
’ the anomalous correlators will play an important role in the

correlatorhay a, i, which is strictly related to the wave ) e .
action spectrurh. However, what is clear from numericaynderstanding of statistical properties of ocean waves.

simulations of the-FPUT system is that also the correlator
hey ay i can assume values that are different from zero. This ACKNOWLEDGMENTS
finding has consequences on the standard wave turbulenc
theory that is based on the Wiskselection rule, i.e., the
splitting of higher-order correlators as a sum of products
second-order correlators. Following R¢fs15], we have
generalized the Wic¢k rule by including the anomalous
correlators. We note that we differ from the case describ
in the S theory [9,10] in that there, the existence of
anomalous correlators was connected with coherent pum
ing in the system, with the anomalous correlator being
measure of partial coherence for exiting waves. In o
observations and predictions, waves with random initial
conditions form phase correlations with each other, result™
ing in an anomalous correlator which is initially zero but
then saturates to a nonzero value as it evolves with time.
One of the most striking manifestations of those corre- APPENDIX A: MATRIX ELEMENTS
lators is the appearance ‘Gfhost excitations,i.e., those Matrix element in Eq.(8)—The matrix elements
characterized by negative frequencies. A formula for thgoverning four-wave interactions for the variah|é&pare
energy content of such excitations as a function of the wave v
spectrum is obtainedthe results compare favorably with _gp 1 2sind ki=Npb.
numerical simulations for the weakly nonlinear regime.TlZ3414 4 e O laplablhiu=N . —p.—
Moreover, we have shown that the spontaneous emergence . . ! ;i o .
of the anomalous correlator is strongly connected with th&,55, % 3T7 535 T1234% 3T 051 Tiosa ¥ T 1pa4
formation of nonlinear standing waves; indeed, the pres- BA1P
ence of those waves implies a strong correlation between

the phases of positive and negative wave numbers. Matrix elements in the canonical transformation,

Our approach paves a new road to investigate dispersiygy. (22)—The coefficients in Eq8) suitable for removing
nonlinear systems by taking into account not only amplinonresonant terms are given by

tudes of the waves, as in traditional wave turbulence, but

®he authors are grateful to Dr. B. Giulinico for
qiscussions. We are grateful to the anonymous referees
(0) L . . .
whose insightful suggestions improved the manuscript
considerably. M.O. has been funded by Progetto di
icerca dAteneo CSTO160004, by tH®epartments of
xcellence 2018/2022 Grant awarded by the Italian
linistry of Education, University and Research (MIUR)
.232/2016), and by The Simons Foundation, Wave
urbulence. J.Z. and Y. V. L. acknowledge support from
SF OCE Grant No. 1635866. Y.V.L. acknowledges
pport from ONR Grant No. NO0014-17-1-2852.

also the phases of the waves. We conjecture that the . T?1234

anomalous correlators play an important role in the theory B1o34 7a b 5b i

of extreme events, such as rogue waves, which form via a 4 3@ 2 1

mechanism related to phase locking between different wave RE 1, T1234 .

numberg29]. Phase locking also leads to the existence of 123474 T . 3

solitons in nonlinear media. b

As was discussed in Sécanomalous phase correlations 5%24 Y, T1234 : 3A2b

have been observed to play a role in causing shifts of wave 1 2 3 4
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APPENDIX B: EVOLUTION EQUATIONS FOR APPENDIX C: DERIVATION OF & b
ANOMALOUS SPECTRUM SPECTRUM
Starting from the transformation in E(R2) and the We consider Eq(22) and take the Fourier transform in

generalized Wiclks decomposition in E¢21), we obtain  time to get

X
61 r s
mﬁabdb Vmaopdbpzuiﬂ“pdbpn&kp&b aki; b Ya bki; P p Bijkrbj; qbk; ,bl; s ﬁl Z d qrs
B b ik
X BN Ak B1P ZX o
! p Bia By, o b L e L od s
Jskil
where higher-order terms in, have been neglected. The Z x
next step consists in building the evolution equation for b Bi?ﬁ:”bj; qbk; b i b a A g
mﬁbbabfrom Eq.(23). Interestingly, the evolution equation bkl
for mf’pdb appears as a deterministic dispersive nonho- aC1p
mogeneous wave evolution equatids], The next step is to build the second-order correlator
op X had;; &k ; ,Pi assuming stationarity.
_dm, ~ 3P db  d b We use the generalized Wisk decomposition in
i —— %27 m o b Ty mE ) e ger P
dv o Kk b e b ok KT Eqg. (21), i.e., including the anomalous correlators. The

: leading-order result is contained in E@5).

aB2p

P
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